Pilonidal Sinus Disease - A Literature Review

Lim J and Shabbir J*
Department of Colorectal Surgery, University Hospital Bristol, UK

Abstract

Pilonidal Sinus Disease (PSD) is a common condition that has had controversies surrounding its aetiology and treatment since its first description in the mid-19th century. The prevalence in the UK has been estimated at 0.7% with peak age of incidence at 16 to 25 years. Males are more commonly affected than females and risk factors include stiff body hair, obesity, and a bathing habit of less than two times a week, and a sedentary occupation or lifestyle (i.e. those who sit for more than six hours a day). Pilonidal sinus disease is best managed by specialists with an interest in the disease such as a colorectal or plastic surgeon experienced in treating recurrent cases. Emergency treatment should primarily consist of off-midline incision and drainage with subsequent referral to a specialist should the condition recur. The aim of this article is to summaries the current practice for treatment of pilonidal sinus disease including difficult modalities used and their limitations.

Introduction

Pilonidal Sinus Disease (PSD) was previously referred to as Jeep disease when it was noticed amongst American soldiers driving the eponymous vehicles in World War II [1]. It is a common condition that has had controversies surrounding its aetiology and treatment since its first description in the mid-19th century [2]. Due to its high recurrence rate, PSD has previously been ascribed to a congenital origin such as a caudal remnant of the neural tube [3,4].

The current accepted aetiology is that PSD is an acquired pathology with multiple contributing factors [5]. Hairs, either loose or in the skin are thought to grow inwards due to a combination of local forces and friction acting on the topography of the natal cleft which cause an inflammatory reaction [6]. It is unknown whether hairs (either loose or native to the region) are the primary cause of PSD or whether hair follicles become affected by the physical environment which leads to micro-abscesses and PSD [7].

Epidemiology

The prevalence in the UK has been estimated at 0.7% with peak age of incidence at 16 to 25 years [8]. PSD does affect children as shown by an American case series of 120 patients with a mean age of 14.9 years (range 1 to 19) [9]. Exact incidence and prevalence figures for the UK have not been calculated and previous estimates are historical or not applicable to the general populace. For example, a prevalence of 4.6% to 8.3% (clinically apparent to silent PSD) was found in a Turkish population [10]. With regards to incidence, it has previously been estimated at 26 per 100,000 in a Norwegian population more than 20 years ago [11]. A more recent estimate states an incidence range of 0.11% in women at college to 8.8% in Turkish soldiers [12]. What is known is that males are more commonly affected than females and risk factors include stiff body hair, obesity, a bathing habit of less than two times a week, and a sedentary occupation or lifestyle (i.e. those who sit for more than six hours a day) [13].

Long term recurrence in PSD has been estimated at 22% with the majority occurring in the first year but recurrences 20 years after treatment has been reported [14]. Recurrence rates should be tracked over a minimum of 5 years as a long term study of PSD in a German cohort found that 60% of recurrences occurred within that time frame [15].

Risk factors for recurrence include black ethnicity, young age at presentation, established recurrent disease, and a family history of PSD, sinus discharge on physical examination, post-operative hair shaving and post-operative Surgical Site Infection (SSI) [15-17]. Counter-intuitively, a German military cohort study found that a high Body Mass Index (i.e. 25 and higher) and smoking were not risk factors for recurrence [16,18]. However, Incision and Drainage (I&D) of PSD abscesses before definitive surgery and use of methylene blue in definitive surgery were found to reduce the
risk of recurrence [15].

Signs and Symptoms

Half of all PSD patients present as an emergency with an abscess in the natal cleft but implantation of hairs can theoretically occur anywhere on the body [19]. One well known (but little seen) example affects men’s barbers who develop sinuses in the web spaces between fingers (interdigital PSD) [20,21]. Other reported sites include the umbilicus, chest wall, axilla and scalp [22]. PSD abscesses most commonly present in the midline of the natal cleft, occasionally with the abscess pointing or protruding laterally [23].

Patients with chronic or recurrent PSD have a range of presentations from a simple cyst to multiple pits in the midline of the natal cleft [24]. Occasionally there is no visible opening but other times, hairs may be extruded from primary or secondary openings [25]. There is no widespread or recognized system of classification for PSD [26], however we propose a pragmatic system to consider the disease entity in terms of severity:

- **Mild** - Sinus disease (which may be multiple)
- **Moderate** - Presence of fistulae (which may be multiple)
- **Severe** - Cicatrisation or involvement of tissue outside the natal cleft

Differential Diagnosis

Few other conditions mimic the clinical picture but occasionally, other skin conditions may cause midline skin pits such as hidradenitis suppurativa, pyoderma gangrenosum, syphilis or tuberculosis [27]. Pathology from nearby structures may also be the underlying cause such as Crohn’s anal fistulae or a congenital presacral sinus. Cancer may arise from within long standing inflamed PSD tissue but this is rare and is estimated to involve 0.1% of chronic PSD patients [28]. This is usually a squamous cell cancer akin to the pathogenesis of a Marjolin’s ulcer where longstanding inflammation triggers carcinoma [29,30], however, other cancers such as basal cell carcinoma and adenocarcinoma have also been found in PSD [31].

Management

The management of PSD can be divided into emergency and elective settings.

Emergency

The treatment of PSD abscesses is straightforward with I&D over the pointing lesion [32]. However, in a retrospective case series, an off-midline approach has been reported as healing approximately 3 weeks quicker than incisions over the midline [33]. PSD patients who only present with cellulitis may be treated with antibiotics but there is no strong evidence that this will arrest abscess formation [22,28]. An improvement on the I&D technique has been reported by Khalil et al. [34] who showed that aspiration of the PSD abscess followed by injection of a local anaesthetic and then incision allowed acute PSD to be treated without a general anaesthetic [34].

Elective

Treating PSD in an elective setting is a more contentious issue. The mainstay of treatment has been removal of diseased tissue via surgery but the defining variables have been the amount of tissue excised and the method of closing the defect.

A further meta-analysis in the same year however, showed that in primary closure versus secondary intention healing, the former heals more quickly but at the expense of increased recurrence [40]. The authors also found that where primary closure was performed, an off-midline closure had lowered surgical site infection and recurrence
fewer post-operative complications and a lower rate of recurrence. They also found that the modified Limberg flap patients had similar outcomes compared to primary closure and had similar dehiscence and wound infection rates. However, Karaca et al. [57] retrospectively compared the modified Limberg flap (n=35) with the modified Karydakis flap (n=46) and found that the base of the asymmetric flap is not fixed to the sacrococcygeal fascia as described by Bessa et al. [58]. The modified Limberg flap group reported less pain, had lower complication rates, recurrence rates and higher patient satisfaction scores [57,58]. In terms of reports in the literature, the V-Y advancement flap (Figure 3) is the most commonly used technique after the Limberg flap and is a third option in closing defects after surgical excision of PSD. This technique was previously used to close sacral pressure sores and offers the advantage of flattening the deep natal cleft groove [59].

A randomized controlled trial comparing V-Y advancement flap over primary closure did not show any significant advantage in terms of SSI, dehiscence or recurrence. In this series by Nursal et al. [17], logistic regression analysis showed that post-operative SSI along with younger age; recurrent disease and discharge on physical exam were independent predictors of recurrence [17]. The Limberg flap has been compared with the V-Y advancement flap in two retrospective studies with differing results. Unalp et al. [60] found that outcomes were not significantly different for either technique except that patients with the Limberg flap had a significantly lower recurrence rate [60]. Öz et al. [61] however, found that hospital stay and time off work were significantly shorter with the Limberg flap [61]. Other outcomes such as post-operative complications and recurrence rate were similar and the authors recommended that whilst the Limberg flap is of use in recurrent PSD, the V-Y advancement flap should be used preferentially in larger defects that need to be closed. Other flap based but less commonly used options include a parasacral perforator based flap, elliptical island flap [62], a bilobed fasciocutaneous flap [63], an elliptical rotation flap [64], or a lateral advancement flap with Burow’s triangles [65].

Adjuncts to surgery

Post-operative infection is a concern in the surgical treatment of PSD but it has not been suggested as a risk factor for recurrence. The use of antibiotics as an adjunct to surgery to reduce Surgical Site Infection (SSI) was the subject of a systematic review which reviewed 12 suitable trials involving 1,172 patients. The review suggested that there was no benefit with single dose prophylactic or long course antibiotics in promoting healing, reducing SSI or reducing recurrence rates [66]. The authors did caution that the heterogeneity in the included studies did not allow a meta-analysis to be performed and that higher grade evidence was needed to come to a firm conclusion.

Tritapepe and Di Padova reported good results with antisepsis flushing and drainage after excision and primary closure for PSD [67]. Their minimum follow-up period was 5 years and they reported no recurrences. However, their study was a case series and did not provide the same level of evidence as a randomized controlled trial.
that the lower temperatures generated by RF (as compared to other techniques) thus seems a feasible option for PSD and the report hypothesized that it would result in less morbidity and post-operative pain [74]. Radiofrequency excision with the reported advantage that the radiofrequency technique causes less damage to surrounding tissues and thus less morbidity. A minimally invasive technique for PSD has been reported with the use of a fistuloscope and destruction of the fistula tracts under direct vision [75]. After removal of hair and debris, electrocautery is directly applied to the tract followed by debridement and irrigation. A case series of 27 patients with this technique showed only 1 recurrence after a year of follow-up but the report failed to describe the severity of disease or whether patients had been previously treated for PSD [76].

Other less invasive treatment options include cryosurgery combined with incision of PSD sinuses which has the advantages of needing only local rather than general anaesthetic, improved healing rates, lack of haemorrhage and simplicity of use [77]. Laser depilation has also been described to treat recurrent disease and has been postulated to work by removing the hairs which gather in the natal cleft causing epithelial disruption and an inflammatory reaction [78,79].

Conclusion

The difficulty in interpreting studies on PSD has been the lack of an agreed or widely used classification or grading system for the severity of the condition. This has repeatedly been acknowledged in meta-analyses or systematic reviews concerning PSD [80]. A staging system with corresponding treatment recommendation has been recently proposed [81]. Whilst this is a step in the right direction, the problem is that such a system would have to be widely adopted, recognized in order to facilitate research, communication and meaningful comparisons amongst the many treatment modalities. Pilonidal sinus disease is best managed by specialists with an interest in the disease such as a colorectal or plastic surgeon experienced in treating recurrent cases. Emergency treatment should primarily consist of off-midline incision and drainage with subsequent referral to a specialist should the condition recur. There is no standard or recommended elective treatment for PSD but evidence suggests that there is no one perfect technique to address all the variables involved (e.g. secondary healing may have a lower recurrence rate but a longer time to healing and flap-based options require in-patient care as opposed to day surgery for primary excision and closure).

References

